We present as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.
View Article and Find Full Text PDFJ R Stat Soc Ser C Appl Stat
April 2022
Obtaining up to date information on the number of UK COVID-19 regional infections is hampered by the reporting lag in positive test results for people with COVID-19 symptoms. In the UK, for 'Pillar 2' swab tests for those showing symptoms, it can take up to five days for results to be collated. We make use of the stability of the under reporting process over time to motivate a statistical temporal model that infers the final total count given the partial count information as it arrives.
View Article and Find Full Text PDF