Publications by authors named "M Brevard"

Background: With the advent of functional magnetic resonance imaging (fMRI) in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior.

View Article and Find Full Text PDF

We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of a recreational dose (1 mg/kg p.o.) of 3,4-methylenedioxymethamphetamine (MDMA) on regional brain activity in awake, restrained marmoset monkeys.

View Article and Find Full Text PDF

Recreational use of 3,4-methylenedioxymethamphetamine (MDMA;"ecstasy") poses worldwide potential health problems. Clinical studies show that repeated exposure to low oral doses of MDMA has toxic effects on the brain, altering cognitive and psychosocial behavior. Functional magnetic resonance imaging in conscious marmoset monkeys was used to evaluate the sensitivity of the brain to an oral dose of MDMA (1 mg/kg).

View Article and Find Full Text PDF

Purpose: Functional imaging of animal models makes it possible to map the functional neuroanatomy contributing to the genesis of seizures. Pentylenetetrazol (PTZ)-induced seizure in rats, a relevant model of human absence and of generalized tonic-clonic epilepsy, was used to stimulate seizure activity within 30 s of administration while collecting continuous, high-resolution, multislice images at subsecond intervals.

Methods: Pilot studies were conducted to establish a quick and effective PTZ model for the imaging experiments.

View Article and Find Full Text PDF