Unlabelled: The Universal 2 total wrist arthroplasty is intended to alleviate wrist pain and restore function. There is limited evidence regarding its success and safety. We report outcomes in 48 wrists of 46 patients with Universal 2 arthroplasty between 2006 and 2014.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2017
Little is known about the mechanics of in vivo loading on total wrist prostheses where many studies have looked at the mechanics of other types of arthroplasty such as for the hip and the knee which has contributed to the overall success of these types of procedures. Currently surgeons would prefer to carry out arthrodesis on the wrist rather than consider arthroplasty as clinical data have shown that the outcome of total wrist arthroplasty is poorer than compared to the hip and knee. More research is needed on the loading mechanisms of the implants in order to enhance the design of future generation implants.
View Article and Find Full Text PDFUnderstanding the load mechanics of orthopaedic implants is important to be able to predict their behaviour in-vivo. Much research, both mechanical and clinical, has been carried out on hip and knee implants, but less has been written about the mechanics of wrist implants. In this paper, the load mechanics of the Universal 2 wrist implant have been measured using two types of measuring techniques, strain gauges and Fibre Bragg Grating measurements to measure strains.
View Article and Find Full Text PDFA finite element model of the wrist was developed to simulate mechanical changes that occur after surgery of the wrist. After partial arthrodesis, the wrist will experience altered force transmission during loading. Three different types of partial arthrodesis were investigated - radiolunate, radioscaphoid, and radioscapholunate - and compared with the healthy untreated wrist.
View Article and Find Full Text PDFProc Inst Mech Eng H
October 2009
The aim of this work was to create an anatomically accurate three-dimensional finite element model of the wrist, applying subject-specific loading and quantifying the internal load transfer through the joint during maximal grip. For three subjects, representing the anatomical variation at the wrist, loading on each digit was measured during a maximal grip strength test with simultaneous motion capture. The internal metacarpophalangeal joint load was calculated using a biomechanical model.
View Article and Find Full Text PDF