Cent Eur J Public Health
June 2016
Aim: The susceptibility of children to polluted air has been pointed out several times in the past. Generally, children suffer from higher exposure to air pollutants than adults because of their higher physical activity, higher metabolic rate and the resultant increase in minute ventilation. The aim of this study was to examine the exposure characteristics of public elementary schools in Prague (the capital of the Czech Republic).
View Article and Find Full Text PDFWe analyzed differentials in exposure to SO(2), PM(10) and NO(2) among Czech urban populations categorized according to education level, unemployment rate, population size and average annual salary. Altogether 39 cities were included in the analysis. The principal component analysis revealed two factors explaining 72.
View Article and Find Full Text PDFInt Arch Occup Environ Health
January 2013
Purpose: Though numerous studies investigating ambient ozone (O(3)) effects on human health were published, such a study for Central Europe is still lacking. We have investigated the association between ozone (O(3)) levels and hospital admissions and mortality due to cardiovascular and respiratory diseases for Prague inhabitants for summer months (April-September) over the 5-year period 2002-2006. Our hypothesis was that ambient O(3) levels in Prague resulted in adverse health outcomes and were associated with increased mortality and hospital admissions.
View Article and Find Full Text PDFWe investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.
View Article and Find Full Text PDFIntroduction: It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise.
View Article and Find Full Text PDF