Manipulating individual molecular spin states with electronic current has the potential to revolutionize quantum information devices. However, it is still unclear how a current can cause a spin transition in single-molecule devices. Here, we propose a spin-crossover (SCO) mechanism induced by electron-phonon coupling in an iron(II) phthalocyanine molecule situated on a graphene-decoupled Ir(111) substrate.
View Article and Find Full Text PDFThe synthesis of the two-dimensional (2D) material graphene and nanostructures derived from graphene has opened up an interdisciplinary field at the intersection of chemistry, physics, and materials science. In this field, it is an open question whether intuition derived from molecular or extended solid-state systems governs the physical properties of these materials. In this work, we study the electromigration force on atoms on 2D armchair graphene nanoribbons in an electric field using ab initio simulation techniques.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach.
View Article and Find Full Text PDFWe study theoretically electron interference in a Mach-Zehnder-like geometry formed by four zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they form intersection angles of 60. Depending on the interribbon separation, each intersection can be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with interfering pathways. Based on the mean-field Hubbard model and Green's function techniques, we evaluate the electron transport properties of such eight-terminal devices and identify pairs of terminals that are subject to self-interference.
View Article and Find Full Text PDF