Publications by authors named "M Boutry"

Phosphoinositides are rare membrane lipids that mediate cell signaling and membrane dynamics. PI(4)P and PI(3)P are two major phosphoinositides crucial for endolysosomal functions and dynamics, making them the lipids of interest in many studies. The acute modulation of phosphoinositides at a given organelle membrane can reveal important insights into their cellular function.

View Article and Find Full Text PDF

The vomeronasal organ (VNO) plays a key role in mammals, since it detects pheromones thus enabling social interactions between congeners. VNO inflammatory changes have been shown to severely impact animal life, leading to impaired social interactions in groups, such as in pigs. Environmental air is known to be strongly modified in farms, and it is suspected to be one of the causes of this alteration.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive.

View Article and Find Full Text PDF

Chemical communication in mammals is ensured by exchanging chemical signals through the vomeronasal organ (VNO) and its ability to detect pheromones. The alteration of this organ has been proven to impact animal life, participating in the onset of aggressive behaviors in social groups. To date, few studies have highlighted the possible causes leading to these alterations, and the farming environment has not been investigated, even though irritant substances such as ammonia are known to induce serious damage in the respiratory tract.

View Article and Find Full Text PDF

Formation and fission of tubules from autolysosomes, endolysosomes, or phagolysosomes are required for lysosome reformation. However, the mechanisms governing these processes in these different lysosomal organelles are poorly understood. Thus, the role of phosphatidylinositol-4-phosphate (PI(4)P) is unclear as it was shown to promote the formation of tubules from phagolysosomes but was proposed to inhibit tubule formation on autolysosomes because the loss of PI4KIIIβ causes extensive lysosomal tubulation.

View Article and Find Full Text PDF