Although the concepts of nonuniform sampling (NUS) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago , it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e.
View Article and Find Full Text PDFt-distributed Stochastic Neighbour Embedding (t-SNE) has become a standard for exploratory data analysis, as it is capable of revealing clusters even in complex data while requiring minimal user input. While its run-time complexity limited it to small datasets in the past, recent efforts improved upon the expensive similarity computations and the previously quadratic minimization. Nevertheless, t-SNE still has high runtime and memory costs when operating on millions of points.
View Article and Find Full Text PDFInsulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive.
View Article and Find Full Text PDFA flexible and scalable approach for protein NMR is introduced that builds on rapid data collection via projection spectroscopy and analysis of the spectral input data via joint decomposition. Input data may originate from various types of spectra, depending on the ultimate goal: these may result from experiments based on triple-resonance pulse sequences, or on TOCSY or NOESY sequences, or mixtures thereof. Flexible refers to the free choice of spectra for the joint decompositions depending on the purpose: assignments, structure, dynamics, interactions.
View Article and Find Full Text PDFWe implement a massively parallel population Monte Carlo approximate Bayesian computation (PMC-ABC) method for estimating diffusion coefficients, sizes and concentrations of diffusing nanoparticles in liquid suspension using confocal laser scanning microscopy and particle tracking. The method is based on the joint probability distribution of diffusion coefficients and the time spent by a particle inside a detection region where particles are tracked. We present freely available central processing unit (CPU) and graphics processing unit (GPU) versions of the analysis software, and we apply the method to characterize mono- and bidisperse samples of fluorescent polystyrene beads.
View Article and Find Full Text PDF