Chemistry
April 2024
RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE.
View Article and Find Full Text PDFInspired by natural sideromycins, the conjugation of antibiotics to siderophores is an attractive strategy to facilitate "Trojan horse" delivery of antibiotics into bacteria. Genome analysis of a soil bacterium, found a "hybrid" biosynthetic gene cluster responsible for the production of both an antibiotic, pyridomycin, and a novel chlorocatechol-containing siderophore named chlorodactyloferrin. While both of these natural products were synthesized independently, analysis of the culture supernatant also identified a conjugate of both molecules.
View Article and Find Full Text PDFis an opportunistic yeast that causes most fungal infections. has become increasingly resistant to antifungal drugs over the past decade. Our study focused on the identification of pure natural compounds for the development of antifungal medicines.
View Article and Find Full Text PDFMicroorganisms
October 2023
is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to pathogenesis that triggers skin diseases.
View Article and Find Full Text PDF