Publications by authors named "M Bigl"

Adhesion G protein-coupled receptors (aGPCRs) are expressed in all organs and are involved in various mechanobiological processes. They are heavily alternatively spliced, forecasting an extraordinary molecular structural diversity. Here, we uncovered the existence of unconventional single-transmembrane (1TM)-containing ADGRL/Cirl proteins devoid of the conventional GPCR layout (i.

View Article and Find Full Text PDF

Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins, a class of surface receptors poised for mechano-proteolytic activation, including an evolutionarily conserved mechanism of cleavage. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively).

View Article and Find Full Text PDF

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells.

View Article and Find Full Text PDF

A hallmark of glioblastoma is the high level of aerobic glycolysis. PFKFB3 and PFKFB4 are regulatory glycolytic enzymes, which are overexpressed in glioblastomas. Selective inhibition of these enzymes has emerged as a new approach in tumor therapy.

View Article and Find Full Text PDF

The Life Cycle Environmental Assessment (LCEA) process for military munitions tracks possible environmental impacts incurred during all phases of the life of a munition. The greatest energetics-based emphasis in the current LCEA process is on manufacturing. A review of recent LCEAs indicates that energetics deposition on ranges from detonations and disposal during training is only peripherally examined through assessment of combustion products derived from closed-chamber testing or models.

View Article and Find Full Text PDF