Sci Total Environ
November 2024
Climate change is expected to significantly deteriorate water quality in heavily managed agricultural landscapes, however, the exact mechanisms of these impacts are unknown. In this study we adopted a modelling approach to predict the multiple effects of climate change on hydrological and biogeochemical responses for dominant solutes and particulates in two agriculture-dominated temperate headwater catchments. We used climatic projections from three climatic models to simulate future flows, mobilisation and delivery of solutes and particulates.
View Article and Find Full Text PDFTo improve water quality and reduce instream erosion, floodplain remediation along agricultural streams can provide multiple ecosystem services through biogeochemical and fluvial processes. During floodplain inundation, longer water residence time and periodic anoxic conditions can lead to increased nitrogen (N) removal through denitrification but also mobilization of phosphorus (P), impeding overall water quality improvements. To investigate the capacity for N and P processing in remediated streams, we measured potential denitrification and nitrous oxide production and yields together with potential P desorption and P fractions in floodplain and stream sediments in ten catchments in Sweden.
View Article and Find Full Text PDFAgricultural headwaters are positioned at the interface between terrestrial and aquatic ecosystems and, therefore, at the margins of scientific disciplines. They are deemed devoid of biodiversity and too polluted by ecologists, overlooked by hydrologists, and are perceived as a nuisance by landowners and water authorities. While agricultural streams are widespread and represent a major habitat in terms of stream length, they remain understudied and thereby undervalued.
View Article and Find Full Text PDFHeavily modified headwater streams and open ditches carry high nitrogen loads from agricultural soils that sustain eutrophication and poor water quality in downstream aquatic ecosystems. To remediate agricultural streams and reduce the export of nitrate (NO), phosphorus and suspended sediments, two-stage ditches with constructed floodplains can be implemented as countermeasures. By extending hydrological connectivity between the stream channel and riparian corridor within constructed floodplains, these remediated ditches enhance the removal of NO via the microbial denitrification process.
View Article and Find Full Text PDF