Publications by authors named "M Bibes"

Infinite layer (IL) nickelates provide a new route beyond copper oxides to address outstanding questions in the field of unconventional superconductivity. However, their synthesis poses considerable challenges, largely hindering experimental research on this new class of oxide superconductors. That synthesis is achieved in a two-step process that yields the most thermodynamically stable perovskite phase first, then the IL phase by topotactic reduction, the quality of the starting phase playing a crucial role.

View Article and Find Full Text PDF

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.

View Article and Find Full Text PDF

For energy-efficient magnetic memories, switching of perpendicular magnetization by spin-orbit torque (SOT) appears to be a promising solution. This SOT switching requires the assistance of an in-plane magnetic field to break the symmetry. Here, we demonstrate the field-free SOT switching of a perpendicularly magnetized thulium iron garnet (TmFeO, TmIG).

View Article and Find Full Text PDF

Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure.

View Article and Find Full Text PDF

Multilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications.

View Article and Find Full Text PDF