Publications by authors named "M Betermier"

Article Synopsis
  • - Ciliates use a programmed genome elimination process involving small RNAs (scnRNAs) that help remove transposable elements (TEs) from the somatic nucleus during development.
  • - scnRNAs are produced from the germline genome and transported to the maternal somatic nucleus, where scnRNAs corresponding to germline-specific sequences are selected for degradation.
  • - The study identifies Gtsf1 as necessary for the selective degradation of scnRNAs tied to retained sequences, suggesting it works alongside the Ptiwi09 protein in the somatic nucleus to regulate this elimination process through a mechanism similar to microRNA degradation in other organisms.
View Article and Find Full Text PDF

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs.

View Article and Find Full Text PDF

SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (, , , , and ).

View Article and Find Full Text PDF

Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC.

View Article and Find Full Text PDF

With its nuclear dualism, the ciliate constitutes a unique model to study how host genomes cope with transposable elements (TEs). harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development.

View Article and Find Full Text PDF