Publications by authors named "M Bertuola"

The effects of environmental factors such as sunlight irradiation and the presence of humic acid (HA) on the physicochemical properties of commercial multiwall carbon nanotubes (MWCNT) suspended in a simulated inorganic matrix (SIM) and their impacts on bacteria growing in biofilms were evaluated. Both solar irradiation and the presence of HA lead to the dissolution of adsorbed metals on the MWCNT, which are residues of synthesis catalysts. Also, preferential adsorption of certain HA components on the MWCNT induces important modifications in the aliphatic/aromatic relationship of HA components in solution and the generation and release of new moieties.

View Article and Find Full Text PDF

Carvacrol (Carv) and thymol (TOH), components of essential oils, are known by their antimicrobial and antioxidant activity. However, Carv but not TOH seems to be the responsible of anti-inflammatory and inhibition of Cu corrosion properties. Since Carv and TOH are positional isomers, their identification is tricky and GC-MS is usually required.

View Article and Find Full Text PDF

The prevention of microbial biofilm formation on a biomaterial surface is crucial in avoiding implants failures and the development of antibiotic resistant bacteria. It was reported that biodegradable Mg alloys may show antimicrobial effects due to the alkalinization of the corroding area. However, this issue is controversial and deserves a detailed study, since the processes occurring at the [biodegradable metal/biological medium] interface are complex and varied.

View Article and Find Full Text PDF

With the intention of taking care of the environment and human health, the development of alternative eco-friendly methods to inhibit metal corrosion is intensively encouraged. In previous works we showed that some phytocompounds components of essential oils such as carvacrol (Carv) and thymol (TOH) are able to be electropolymerized on metals and they seem to be promissory for this purpose. The aim this paper is to investigate if the biocompatibility of copper covered by coatings formed by electropolymerization of Carv and TOH (polyCarv and polyTOH) is related with the potential selected for the electropolymerization process.

View Article and Find Full Text PDF

The release of copper ions by copper-containing devices, equipments and facilities represents a potential risk for biological systems. Different inhibitory treatments (CuIT) that use organic compounds have been proposed to reduce this environmental hazard but many of them are not in accordance with new regulations. The development of an ecofriendly CuIT based on the use of carvacrol, a natural phenolic compound present in essential oils, is reported here.

View Article and Find Full Text PDF