Publications by authors named "M Berthel"

Introduction: Multi-channel electrophysiology systems for recording of neuronal activity face significant data throughput limitations, hampering real-time, data-informed experiments. These limitations impact both experimental neurobiology research and next-generation neuroprosthetics.

Methods: We present a novel solution that leverages the high integration density of 22nm fully-depleted silicon-on-insulator technology to address these challenges.

View Article and Find Full Text PDF

Effective control of post-operative inflammation after tissue repair remains a clinical challenge. A tissue repair patch that could appropriately integrate into the surrounding tissue and control inflammatory responses would improve tissue healing. A collagen-based hybrid tissue repair patch has been developed in this work for the local delivery of an anti-inflammatory drug.

View Article and Find Full Text PDF

Melt electrospun fibers, in general, have larger diameters than normally achieved with solution electrospinning. This study uses a modified nozzle to direct-write melt electrospun medical-grade poly(ε-caprolactone) onto a collector resulting in fibers with the smallest average diameter being 275 ± 86 nm under certain processing conditions. Within a flat-tipped nozzle is a small acupuncture needle positioned so that reduces the flow rate to ≈0.

View Article and Find Full Text PDF

We describe the case of a 58-year-old patient with complete callosal agenesis, who developed after a stroke a long lasting and distressing diagonistic dyspraxia. We found two original treatments to relieve the patient from his left limb conflicting movements. Reinforcing left arm sensory input minimized dyspraxic movements but was difficult to apply daily and was found unsatisfactory by the patient.

View Article and Find Full Text PDF

Introduction: Epilepsy is a chronic brain disease characterized by unprovoked seizures, which can have severe consequences including loss of awareness and death. Currently, 30% of epileptic patients do not receive adequate seizure alleviation from oral routes of medication. Over the last decade, local drug delivery to the focal area of the brain where the seizure originates has emerged as a potential alternative and may be achieved through the fabrication of drug-loaded polymeric implants for controlled on-site delivery.

View Article and Find Full Text PDF