The US dairy cattle genetic evaluation is currently a multistep process, including multibreed traditional BLUP estimations followed by single-breed SNP effects estimation. Single-step GBLUP (ssGBLUP) combines pedigree and genomic data for all breeds in one analysis. Unknown parent groups (UPG) or metafounders (MF) can be used to address missing pedigree information.
View Article and Find Full Text PDFRandom-regression models (RRM) are used in national genetic evaluations for longitudinal traits. The outputs of RRM are an index based on random-regression coefficients and its reliability. The reliabilities are obtained from the inverse of the coefficient matrix of mixed model equations (MME).
View Article and Find Full Text PDFThreshold models are often used in genetic analysis of categorical data, such as calving ease. Solutions in the liability scale are easily transformed into probabilities; therefore, estimated breeding values are published as the probability of expressing the category of main interest and are the industry's gold standard because they are easy to interpret and use for selection. However, because threshold models involve nonlinear equations and probability functions, implementing such a method is complex.
View Article and Find Full Text PDFBackground: Single-nucleotide polymorphism (SNP) effects can be backsolved from ssGBLUP genomic estimated breeding values (GEBV) and used for genome-wide association studies (ssGWAS). However, obtaining p-values for those SNP effects relies on the inversion of dense matrices, which poses computational limitations in large genotyped populations. In this study, we present a method to approximate SNP p-values for ssGWAS with many genotyped animals.
View Article and Find Full Text PDFThe exact accuracy of estimated breeding values can be calculated based on the prediction error variances obtained from the diagonal of the inverse of the left-hand side (LHS) of the mixed model equations (MME). However, inverting the LHS is not computationally feasible for large datasets, especially if genomic information is available. Thus, different algorithms have been proposed to approximate accuracies.
View Article and Find Full Text PDF