Modeling microbial interactions as sparse and reproducible networks is a major challenge in microbial ecology. Direct interactions between the microbial species of a biome can help to understand the mechanisms through which microbial communities influence the system. Most state-of-the art methods reconstruct networks from abundance data using Gaussian Graphical Models, for which several statistically grounded and computationnally efficient inference approaches are available.
View Article and Find Full Text PDFBackground: Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent and privacy-preserving alternative to data sharing.
View Article and Find Full Text PDFAlthough metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical specificities of the data (e.g., sparse, over-dispersed, compositional, inter-variable dependency).
View Article and Find Full Text PDF