We previously reported that mice made deficient for the transcriptional factor USF2 fail to express hepcidin 1 and hepcidin 2 genes as a consequence of targeted disruption of the Usf2 gene lying just upstream in the locus. These mice developed an iron overload phenotype with excess iron deposition in parenchymal cells and decreased reticuloendothelial iron. At that time, although the role of USF2 was still confounding, we proposed for the first time the role of hepcidin as a negative regulator of iron absorption and iron release from macrophages.
View Article and Find Full Text PDFWe report the generation of a tetracycline-regulated (Tet ON) transgenic mouse model for acute and chronic expression of the iron regulatory peptide hepcidin in the liver. We demonstrate that short-term and long-term tetracycline-dependent activation of hepcidin in adult mice leads to hypoferremia and iron-limited erythropoiesis, respectively. This clearly establishes the key role of hepcidin in regulating the extracellular iron concentration.
View Article and Find Full Text PDFWe closely mimicked the in vivo setting in which sporadic hepatocarcinoma occurs by establishing a transgenic mouse model carrying regulatable SV40 early sequences under the control of the regulatory sequences of the human antithrombin III gene that confer hepatic expression. In this system, floxed dormant oncogenic sequences became functional after excision due to adenoviral expression of Cre recombinase or the stable transgenic expression in liver of a tamoxifen-inducible Cre. Hepatic oncogene expression was switched on by both methods, leading to the development of hepatocellular carcinoma.
View Article and Find Full Text PDFHepcidin, a recently discovered iron regulatory peptide, is believed to inhibit the release of iron from absorptive enterocytes and macrophages. Liver hepcidin synthesis is induced in vivo by iron stores and inflammation. The molecular basis of the regulation of hepcidin gene expression by these effectors in hepatocytes is currently unknown, although there is strong evidence that indirect mechanisms are involved.
View Article and Find Full Text PDFEvidence is accumulating that hepcidin, a liver regulatory peptide, could be the common pathogenetic denominator of all forms of iron overload syndromes including HFE-related hemochromatosis, the most prevalent genetic disorder characterized by inappropriate iron absorption. To understand the mechanisms whereby hepcidin controls iron homeostasis in vivo, we have analyzed the level of iron-related proteins by Western blot and immunohistochemistry in hepcidin-deficient mice, a mouse model of severe hemochromatosis. These mice showed important increased levels of duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), and ferroportin compared with control mice.
View Article and Find Full Text PDF