In osteoarthritis (OA), oxidative stress plays a crucial role in maintaining and sustaining cartilage degradation. Current OA management requires a combination of pharmaceutical and non-pharmacological strategies, including intraarticular injections of hyaluronic acid (HA). However, several lines of evidence reported that HA oxidation by reactive oxygen species (ROS) is linked with HA cleavage and fragmentation, resulting in reduced HA viscosity.
View Article and Find Full Text PDFObjective And Design: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation.
Methods: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery.
Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study, siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to 55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the degree of ionization of the polycations at pH 7.4.
View Article and Find Full Text PDFOne important challenge in treating avascular-degraded cartilage is the development of new drugs for both pain management and joint preservation. Considerable efforts have been invested in developing nanosystems using biomaterials, such as chitosan, a widely used natural polymer exhibiting numerous advantages, i.e.
View Article and Find Full Text PDF