The mid-infrared (MIR) spectral region attracts attention for accurate chemical analysis using photonic devices. Few-layer graphene (FLG) polytypes are promising platforms, due to their broad absorption in this range and gate-tunable optical properties. Among these polytypes, the noncentrosymmetric ABCB/ACAB structure is particularly interesting, due to its intrinsic bandgap (8.
View Article and Find Full Text PDFFerroelectricity in atomically thin bilayer structures has been recently predicted and measured in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'. These observations have been restricted to switching between only two polarization states under low charge carrier densities, limiting the practical application of the revealed phenomena.
View Article and Find Full Text PDFDespite their partial ionic nature, many layered diatomic crystals avoid internal electric polarization by forming a centrosymmetric lattice at their optimal van-der-Waals stacking. Here, we report a stable ferroelectric order emerging at the interface between two naturally-grown flakes of hexagonal-boron-nitride, which are stacked together in a metastable non-centrosymmetric parallel orientation. We observe alternating domains of inverted normal polarization, caused by a lateral shift of one lattice site between the domains.
View Article and Find Full Text PDF