Publications by authors named "M Behmanesh"

As a systematic review, this study addresses a gap in the literature by evaluating both the short-term and long-term outcomes of breast cancer patients undergoing neoadjuvant chemotherapy (NAC). The purpose of the current study was to evaluate NAC's impact on breast cancer patients' surgical outcomes. We performed a comprehensive search of international databases, including PubMed, Scopus, Embase, and Science Direct, covering studies from 2000 to 2023, using carefully selected keywords.

View Article and Find Full Text PDF

Neuropathic pain is a debilitating and chronic condition that results from damage to the peripheral and central nervous system. The inflammatory mediators such as leukotrienes, and opioidergic pathways are involved in the neuropathic pain generation. The present study aimed to determine the effect of local montelukast and the role of opioid receptors using chronic constriction injury (CCI) of the sciatic nerve in rats.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components.

View Article and Find Full Text PDF
Article Synopsis
  • Damaged cartilage has poor self-healing capabilities, which necessitates the development of innovative tissue engineering techniques like injectable hydrogels that mimic cartilage properties.
  • The study explores a newly designed injectable hydrogel embedded with magnetic iron oxide nanoparticles (MNPs) that promote the differentiation of stem cells into cartilage-forming cells when exposed to a magnetic field.
  • Results show that hydrogels with MNPs exhibit improved mechanical properties, enhanced cell viability and adhesion, and promote chondrogenic differentiation more effectively than without MNPs, indicating potential for advanced tissue engineering applications.
View Article and Find Full Text PDF

This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used.

View Article and Find Full Text PDF