Objective: The escalating prevalence of noncarious tooth wear stands as a critical concern in the backdrop of evolving lifestyles and dietary patterns. Dental erosion, a progressive condition induced by both endogenous and exogenous acidic influences, directly impacts enamel integrity, resulting in surface loss. The contemporary surge in carbonated beverage consumption further exacerbates this erosive milieu, underscoring the urgency for dental practitioners to adopt meticulous treatment strategies.
View Article and Find Full Text PDFOrganophosphorus flame retardants (OPFRs) are abundant and persistent in the environment but have limited toxicity information. Their similarity in structure to organophosphate pesticides presents great concern for developmental neurotoxicity (DNT). However, current in vivo testing is not suitable to provide DNT information on the amount of OPFRs that lack data.
View Article and Find Full Text PDFHeavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems.
View Article and Find Full Text PDFControlling cellular responses to nanoparticles so far is predominantly empirical, typically requiring multiple rounds of optimization of particulate carriers. In this study, a systematic model-assisted approach should lead to the identification of key parameters that account for particle properties and their cellular recognition. A copolymer particle library was synthesized by a combinatorial approach in soap free emulsion copolymerization of styrene and methyl methacrylate, leading to a broad compositional as well as constitutional spectrum.
View Article and Find Full Text PDFMovements in plants, such as the coiling of tendrils in climbing plants, have been studied as inspiration for coiling actuators in robotics. A promising approach to mimic this behavior is the use of multimaterial systems that show different elastic moduli. Here, we report on the development of magnetically controllable/triggerable multimaterial fibers (MMFs) as artificial tendrils, which can reversibly coil and uncoil on stimulation from an alternating magnetic field.
View Article and Find Full Text PDF