Improving the qubit's lifetime (T) is crucial for fault-tolerant quantum computing. Recent advancements have shown that replacing niobium (Nb) with tantalum (Ta) as the base metal significantly increases T, likely due to a less lossy native surface oxide. However, understanding the formation mechanism and nature of both surface oxides is still limited.
View Article and Find Full Text PDFLithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns.
View Article and Find Full Text PDFThe interfacial structure formed by Pt nanoparticles grown epitaxially on a SrTiO (001) surface by pulsed laser deposition was studied by X-ray standing-wave (XSW) excited core-level photoelectron emission. The XSW-generated 3D atomic map of the Pt and interfacial oxygens for the oxidized Pt/SrTiO interface differs significantly from that of the as-deposited interface. After oxidation, the Pt atoms shifted upward and their atomic occupation at fcc-like sites evolved as the oxidation temperature increased.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Proc Natl Acad Sci U S A
February 2024
Electrostatic forces in solutions are highly relevant to a variety of fields, ranging from electrochemical energy storage to biology. However, their manifestation in concentrated electrolytes is not fully understood, as exemplified by counterintuitive observations of colloidal stability and long-ranged repulsions in molten salts. Highly charged biomolecules, such as DNA, respond sensitively to ions in dilute solutions.
View Article and Find Full Text PDF