Publications by authors named "M Bedzyk"

Improving the qubit's lifetime (T) is crucial for fault-tolerant quantum computing. Recent advancements have shown that replacing niobium (Nb) with tantalum (Ta) as the base metal significantly increases T, likely due to a less lossy native surface oxide. However, understanding the formation mechanism and nature of both surface oxides is still limited.

View Article and Find Full Text PDF

Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns.

View Article and Find Full Text PDF

The interfacial structure formed by Pt nanoparticles grown epitaxially on a SrTiO (001) surface by pulsed laser deposition was studied by X-ray standing-wave (XSW) excited core-level photoelectron emission. The XSW-generated 3D atomic map of the Pt and interfacial oxygens for the oxidized Pt/SrTiO interface differs significantly from that of the as-deposited interface. After oxidation, the Pt atoms shifted upward and their atomic occupation at fcc-like sites evolved as the oxidation temperature increased.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

Electrostatic forces in solutions are highly relevant to a variety of fields, ranging from electrochemical energy storage to biology. However, their manifestation in concentrated electrolytes is not fully understood, as exemplified by counterintuitive observations of colloidal stability and long-ranged repulsions in molten salts. Highly charged biomolecules, such as DNA, respond sensitively to ions in dilute solutions.

View Article and Find Full Text PDF