Arginase 1 Deficiency (ARG1-D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1-D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae.
View Article and Find Full Text PDFBackground: Arginase 1 Deficiency (ARG1-D) is a rare, progressive, metabolic disorder that is characterized by devastating manifestations driven by elevated plasma arginine levels. It typically presents in early childhood with spasticity (predominately affecting the lower limbs), mobility impairment, seizures, developmental delay, and intellectual disability. This systematic review aims to identify and describe the published evidence outlining the epidemiology, diagnosis methods, measures of disease progression, clinical management, and outcomes for ARG1-D patients.
View Article and Find Full Text PDFBackground: Arginase 1 Deficiency (ARG1-D) is an inherited metabolic disease that leads to significant morbidity.
Aims: Despite the recognized burden of disease, information on health care resource utilization (HCRU) among patients with ARG1-D is lacking. We, therefore, sought to evaluate HCRU in ARG1-D relative to non-ARG1-D cohort.
Orphanet J Rare Dis
March 2022
Background/objective: Arginase 1 Deficiency (ARG1-D) is a rare inherited metabolic disease with progressive, devastating neurological manifestations with early mortality and high unmet need. Information on prevalence is scarce and highly variable due to limited newborn screening (NBS) availability, variability of arginine levels in the first days of life, and high rates of misdiagnosis. US birth prevalence was recently estimated via indirect methods at 1.
View Article and Find Full Text PDFA 6-week-old female Simmental calf was evaluated for acute non-ambulatory tetraparesis. Physical and laboratory examinations revealed no clinically relevant abnormalities. Neurological findings were consistent with acute, progressive and painful cervical myelopathy.
View Article and Find Full Text PDF