Background: Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5.
View Article and Find Full Text PDFBackground: The analysis of large and complex biological datasets in bioinformatics poses a significant challenge to achieving reproducible research outcomes due to inconsistencies and the lack of standardization in the analysis process. These issues can lead to discrepancies in results, undermining the credibility and impact of bioinformatics research and creating mistrust in the scientific process. To address these challenges, open science practices such as sharing data, code, and methods have been encouraged.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification.
View Article and Find Full Text PDFAmong the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mechanisms by which this occurs have not been elucidated as yet.
View Article and Find Full Text PDFObjective: Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.
View Article and Find Full Text PDF