Publications by authors named "M Beatrice Saccardo"

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase responsible for the development of different tumor types. Despite the remarkable clinical activity of crizotinib (Xalkori), the first ALK inhibitor approved in 2011, the emergence of resistance mutations and of brain metastases frequently causes relapse in patients. Within our ALK drug discovery program, we identified compound 1, a novel 3-aminoindazole active on ALK in biochemical and in cellular assays.

View Article and Find Full Text PDF

Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins.

View Article and Find Full Text PDF

The NTRK1 gene encodes Tropomyosin-related kinase A (TRKA), the high-affinity Nerve Growth Factor Receptor. NTRK1 was originally isolated from a colorectal carcinoma (CRC) sample as component of a somatic rearrangement (TPM3-NTRK1) resulting in expression of the oncogenic chimeric protein TPM3-TRKA, but there has been no subsequent report regarding the relevance of this oncogene in CRC. The KM12 human CRC cell line expresses the chimeric TPM3-TRKA protein and is hypersensitive to TRKA kinase inhibition.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) is the master regulator of mitosis and a target for anticancer therapy. To develop a marker of PLK1 activity in cells and tumour tissues, this study focused on translational controlled tumour protein (TCTP) and identified serine 46 as a site phosphorylated by PLK1 in vitro. Using an antibody raised against phospho-TCTP-Ser46, it was demonstrated that phosphorylation at this site correlates with PLK1 level and kinase activity in cells.

View Article and Find Full Text PDF