Publications by authors named "M Battocchio"

Objective: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others.

View Article and Find Full Text PDF

Background: Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Spastic Paraplegia Type 7 (SPG7) are paradigmatic spastic ataxias (SPAX) with suggested white matter (WM) involvement. Aim of this work was to thoroughly disentangle the degree of WM involvement in these conditions, evaluating both macrostructure and microstructure via the analysis of diffusion MRI (dMRI) data.

Material And Methods: In this multi-center prospective study, ARSACS and SPG7 patients and Healthy Controls (HC) were enrolled, all undergoing a standardized dMRI protocol and a clinimetrics evaluation including the Scale for the Assessment and Rating of Ataxia (SARA).

View Article and Find Full Text PDF

Tractography is a powerful tool to study brain connectivity in vivo, but it is well known to suffer from an intrinsic trade-off between sensitivity and specificity. A critical - but usually underrated - parameter to choose that can heavily impact the quality of the estimates is the number of streamlines to be reconstructed for a given data set. In fact, sensitivity can be improved by generating more and more streamlines, as all real anatomical connections are likely reconstructed, but lots of false positives are inevitably introduced, too.

View Article and Find Full Text PDF

Introduction: Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, is necessary to investigate myelin-weighted brain connectivity.

View Article and Find Full Text PDF

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations.

View Article and Find Full Text PDF