Publications by authors named "M Battle"

Amyloid-PET quantification through the tracer-independent Centiloid (CL) scale has emerged as an essential tool for the accurate measurement of amyloid-β (Aβ) pathology in Alzheimer's disease (AD) patients. The AMYPAD consortium set out to integrate existing literature and recent work from the consortium to provide clinical context-of-use recommendations for the CL scale. Compared to histopathology, visual reads, and cerebrospinal fluid, CL quantification accurately reflects the amount of AD pathology.

View Article and Find Full Text PDF

Several studies have demonstrated strong agreement between routine clinical visual assessment and quantification, suggesting that quantification approaches could support assessment by less experienced readers or in challenging cases. However, all studies to date have implemented a retrospective case collection, and challenging cases were generally underrepresented. We included all participants ( = 741) from the AMYPAD diagnostic and patient management study with available baseline amyloid PET quantification.

View Article and Find Full Text PDF

In this study, we assessed 43 accessions of sorghum from 16 countries across three continents. Our objective was to identify stomatal and photosynthetic traits that could be exploited in breeding programmes to increase photosynthesis without increasing water use under dynamic light environments. Under field conditions, sorghum crops often have limited water availability and are exposed to rapidly fluctuating light intensities, which influences both photosynthesis and stomatal behaviour.

View Article and Find Full Text PDF

Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions.

View Article and Find Full Text PDF