Publications by authors named "M Battalora"

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use.

View Article and Find Full Text PDF

A global, harmonized evaluation system for crop protection chemicals based on exposure and risk will improve the ability to inform risk management decisions and better support innovation. This would be achieved through harmonized risk assessment-based regulatory decision-making realized through the application of the best available science, via integration of new methods and traditional data to create tailored exposure-driven risk assessments. A requirement to achieve success is a structure that encourages direct communication between the regulatory community and the regulated industry, which would enable a more rapid incorporation of new technologies and advancing science.

View Article and Find Full Text PDF

Methods for investigating the Mode of Action (MoA) for rodent liver tumors via constitutive androstane receptor (CAR) activation are outlined here, based on current scientific knowledge about CAR and feedback from regulatory agencies globally. The key events (i.e.

View Article and Find Full Text PDF

Dermal absorption is an integral part of non-dietary human safety risk assessments for agrochemicals. Typically, dermal absorption data for agrochemical active substances are generated from the undiluted formulation concentrate and its spray dilutions. European Food Safety Authority (EFSA) guidance, which combines highly conservative default values, very limited opportunities for read-across from existing data and other overly conservative conclusions, was the driver for this assessment.

View Article and Find Full Text PDF

Diuron, a substituted urea herbicide, is carcinogenic to the rat urinary bladder at high dietary levels (2500 ppm). To further elucidate the mode of action, this study aimed to determine the time course and sequence of bladder cytotoxic and proliferative changes induced by diuron treatment of male Wistar rats. Rats were randomized into two groups (control and 2500 ppm diuron) and treated for 28 days.

View Article and Find Full Text PDF