Studying zebrafish embryos' growth through imaging them in their natural growth environment may reveal what has not been possible through the current imaging technique which uses mechanically-confining and nutrient-limiting gel, like agarose. This paper presents, for the first time, the imaging of live zebrafish embryos in their natural environment over 20 hours through acoustic tweezers capable of contactless trapping and precise manipulation via trapping without standing waves. The tweezers is shown to trap and hold a zebrafish embryo in its growth medium from 17 hours post fertilization (hpf) to 37 hpf under a Light-Sheet microscope for imaging.
View Article and Find Full Text PDFGPR6 is an orphan G protein-coupled receptor with high constitutive activity found in D2-type dopamine receptor-expressing medium spiny neurons of the striatopallidal pathway, which is aberrantly hyperactivated in Parkinson's disease. Here, we solved crystal structures of GPR6 without the addition of a ligand (a pseudo-apo state) and in complex with two inverse agonists, including CVN424, which improved motor symptoms in patients with Parkinson's disease in clinical trials. In addition, we obtained a cryo-electron microscopy structure of the signaling complex between GPR6 and its cognate G heterotrimer.
View Article and Find Full Text PDFBackground: The objective of this study was to investigate cognitive performance and brain volume profile in patients with neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS).
Materials And Methods: In a historical cohort study, 29 MS patients, 31 NMOSD patients, and 20 healthy controls (HCs) underwent neuropsychological assessment using the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS). Patients with MS and NMOSD also underwent a 1.
Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns.
View Article and Find Full Text PDFLarge language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements. This hinders the use of current large models in scientific discovery.
View Article and Find Full Text PDF