Lung cancer represents the leading cause of cancer-related deaths. Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is a molecularly heterogeneous disease with intratumoral heterogeneity and a significant mutational burden associated with clinical outcome. Tumor microenvironment (TME) plays a fundamental role in the initiation and progression of primary de novo lung cancer and significantly influences the response of tumor cells to therapy.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Resistance to chemotherapy represents a persisting medical problem, ranking among main causes of chemotherapy failure and cancer mortality. There is a possibility to utilize and repurpose already existing therapeutics which were not primarily intended for oncological treatment. Overactivation of adrenergic receptors and signaling dysregulation promotes tumor progression, metastatic potential, immune system evasion, tumor angiogenesis and drug resistance.
View Article and Find Full Text PDFBackground: Hypoxia in the tumor microenvironment (TME) is often the main factor in the cancer progression. Moreover, low levels of oxygen in tumor tissue may signal that the first- or second-line therapy will not be successful. This knowledge triggers the inevitable search for different kinds of treatment that will successfully cure aggressive tumors.
View Article and Find Full Text PDFAbdominal aortic aneurysms (AAA) are a significant cause of premature deaths worldwide. Since there is no specific treatment for reducing AAA progression, it is crucial to understand the pathogenesis leading to aneurysm wall weakening/remodeling and identify new proteins involved in this process which could subsequently serve as novel therapeutic targets. In this study, we analyzed the presence of the hypoxia-related proteins carbonic anhydrase IX (CA IX), hypoxia-inducible factor 1α (HIF-1α), and AKT as the key molecule in the phosphoinositide-3-kinase pathway in the AAA wall.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2021
Antibody-modified magnetic nanoparticles were prepared to study their cellular uptake in 3D multicellular spheroidal cell cultures. For this purpose, carbonic anhydrase IX specific monoclonal antibody VII/20 was selected to conjugate on the surface of positively charged glycine coated magnetic nanoparticles in a form of a stable magnetic fluid. In this work, glycine-functionalized magnetic nanoparticles were characterized by different methods.
View Article and Find Full Text PDF