We are exposed daily to many glycans from bacteria and food plants. Bacterial glycans are generally antigenic and elicit antibody responses. It is unclear if food glycans' sharing of antigens with bacterial glycans influences our immune responses to bacteria.
View Article and Find Full Text PDFThe rare branched-chain sugar apiose, once thought to only be present in the plant kingdom, was found in two bacterial species: Geminicoccus roseus and Xanthomonas pisi. Glycans with apiose residues were detected in aqueous methanol-soluble fractions as well as in the insoluble pellet fraction of X. pisi.
View Article and Find Full Text PDFCan accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the gene in resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall.
View Article and Find Full Text PDFThe branched-chain sugar apiose was widely assumed to be synthesized only by plant species. In plants, apiose-containing polysaccharides are found in vascularized plant cell walls as the pectic polymers rhamnogalacturonan II and apiogalacturonan. Apiosylated secondary metabolites are also common in many plant species including ancestral avascular bryophytes and green algae.
View Article and Find Full Text PDF