Publications by authors named "M Baque"

Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements.

View Article and Find Full Text PDF

Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th.

View Article and Find Full Text PDF
Article Synopsis
  • The term "biosignature" is crucial in astrobiology, linking observations to possible biological causes, but its definitions vary across scientific communities.
  • There are concerns that current definitions may overstate certainty and create confusion, especially since the distinction between life and non-life is not always clear.
  • The authors propose that scientists should be cautious with the term, define it explicitly, and use a checklist for evaluating biosignature claims to enhance communication and understanding in the field.
View Article and Find Full Text PDF

The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions.

View Article and Find Full Text PDF
Article Synopsis
  • Xanthoria parietina is a lichen that can tolerate high levels of UV radiation due to a compound called parietin, and researchers tested its survivability under simulated Martian conditions for 30 days.
  • The study monitored the lichen's health using chlorophyll a fluorescence and found significant impacts on its photosynthetic efficiency, particularly between UV-exposed samples and those kept in darkness.
  • Analyses through Raman spectroscopy and transmission electron microscopy showed that UV exposure led to decreased carotenoid levels and structural damage in the lichen's cells, but overall, X. parietina demonstrated resilience suitable for potential long-term space exposure.
View Article and Find Full Text PDF