Publications by authors named "M Baltatu"

Magnesium (Mg) is considered an attractive option for orthopedic applications due to its density and elastic modulus close to the natural bone of the body, as well as biodegradability and good tensile strength. However, it faces serious challenges, including a high degradation rate and, as a result, a loss of mechanical properties during long periods of exposure to the biological environment. Also, among its other weaknesses, it can be mentioned that it does not deal with bacterial biofilms.

View Article and Find Full Text PDF

As a smart implant, magnesium (Mg) is highly biocompatible and non-toxic. In addition, the elastic modulus of Mg relative to other biodegradable metals (iron and zinc) is close to the elastic modulus of natural bone, making Mg an attractive alternative to hard tissues. However, high corrosion rates and low strength under load relative to bone are some challenges for the widespread use of Mg in orthopedics.

View Article and Find Full Text PDF

Unlabelled: Orthodontic mini-implants are devices used for anchorage in various orthodontic treatments. We conducted a pilot study which aimed to observe preliminary trends regarding the impact of heat treatment on the elastic modulus of Ti6Al4V alloy and stainless steel 316L mini-implants. The initial phase involved testing the impact of heat treatment on the mechanical properties of Ti6Al4V alloy and stainless steel 316L mini-implants.

View Article and Find Full Text PDF

Biomaterials are currently a unique class of materials that are essential to improving the standard of human life and extending it. In the assent of the appearance of biomaterials that contain non-toxic elements, in this study, we examine a system of Ti25Mo7Zr15TaSi ( = 0, 0.5, 0.

View Article and Find Full Text PDF

The main purpose of this research is to evaluate the mechanical characteristics and biocompatibility of two novel titanium alloys, Ti15Mo7ZrxSi (x = 0, 0.5, 0.75, 1).

View Article and Find Full Text PDF