Persistent organic pollutants (POPs) pose a significant global threat to human health and the environment, and require continuous monitoring due to their ability to migrate long distances. Active biomonitoring using cloned mosses is an inexpensive but underexplored method to assess POPs, mainly due to the poor understanding of the loading mechanisms of these pollutants in mosses. In this work, Fontinalis antipyretica (aquatic moss) and Sphagnum palustre (terrestrial moss) were evaluated as potential biomonitors of hexachlorocyclohexanes (HCHs: α-, β-, γ-, δ-HCH), crucial POPs.
View Article and Find Full Text PDFThe productive application of motile microorganisms for degrading hydrophobic contaminants in soil is one of the most promising processes in modern remediation due to its sustainability and low cost. However, the incomplete biodegradation of the contaminants and the formation of the intermediary metabolites in the process may increase the toxicity in soil during bioremediation, and motile inoculants may mobilize the pollutants through biosorption. Therefore, controlling these factors should be a fundamental part of soil remediation approaches.
View Article and Find Full Text PDFRecent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria ( VM552, a polycyclic aromatic hydrocarbon-degrader, and sp.
View Article and Find Full Text PDFPlants and their associated microbiota can have a significant impact on the behaviour of soil contaminants. Particularly, root exudation is one of the most important plant-associated processes in this respect, as it may have a substantial effect on the bioavailability of soil contaminants, specially of hydrophobic contaminants strongly sorbed by soil. The aim of the present study was to evaluate the effect of root exudates (natural and artificial) on the desorption of α-, β-, δ- and γ-isomers of hexachlorocyclohexane (HCH) from contaminated soil, using batch experiments.
View Article and Find Full Text PDF