Operable triple-negative breast cancer (TNBC) has a higher risk of recurrence and death compared to other subtypes. Tumor size and nodal status are the primary clinical factors used to guide systemic treatment, while biomarkers of proliferation have not demonstrated value. Recent studies suggest that subsets of TNBC have a favorable prognosis, even without systemic therapy.
View Article and Find Full Text PDFBackground: Invasive breast cancer patients are increasingly being treated with neoadjuvant chemotherapy; however, only a fraction of the patients respond to it completely. To prevent overtreatment, there is an urgent need for biomarkers to predict treatment response before administering the therapy.
Methods: In this retrospective study, we developed hypothesis-driven interpretable biomarkers based on deep learning, to predict the pathological complete response (pCR, i.
Recently, large, high-quality public datasets have led to the development of convolutional neural networks that can detect lymph node metastases of breast cancer at the level of expert pathologists. Many cancers, regardless of the site of origin, can metastasize to lymph nodes. However, collecting and annotating high-volume, high-quality datasets for every cancer type is challenging.
View Article and Find Full Text PDFTo guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced histopathologist.
View Article and Find Full Text PDFBackground: The definition of objective, clinically applicable evaluation criteria for FISH 1c/7c in laryngeal precursor lesions for the detection of chromosome instability (CI). Copy Number Variations (CNV) for chromosomes 1 and 7 reflect the general ploidy status of premalignant head and neck lesions and can therefore be used as a marker for CI. Methods: We performed dual-target FISH for chromosomes 1 and 7 centromeres on 4 µm formalin-fixed, paraffin-embedded tissue sections of 87 laryngeal premalignancies to detect CNVs.
View Article and Find Full Text PDF