Context: Different intermittent fasting (IF) protocols have been proven to be efficient in improving cardiometabolic markers, but further research is needed to examine whether or not combining IF regimens plus physical exercise is superior to control diets (ie, nonfasting eating) plus physical exercise in this setting.
Objective: The aim of this study was to determine whether or not combining IF plus exercise interventions is more favorable than a control diet plus exercise for improving cardiometabolic health outcomes.
Data Source: PubMed, Scopus, and Web of Science were comprehensively searched until April 2023.
Background And Aims: The purpose of the current study was to evaluate the expression of gluconeogenesis and insulin resistance key genes; including insulin receptor substrate 1 (Irs1), a serine/threonine protein kinase (Akt), forkhead box class-O 1 (FoxO1) and phosphoenolpyruvate carboxykinase (Pepck) genes, and lipid profiles following either a standard or a high-fat diet (HFD) and either an aerobic exercise or non-exercise intervention in prediabetic and type 2 diabetic (T2DM) mice.
Methods: 24 male mice were randomly assigned to two groups fed with a normal diet (ND) or a HFD for 12 weeks. The mice in each group were again randomly assigned to two groups to create four groups in total: 1.
Background: Polycystic ovary syndrome (PCOS) is one of the most incident reproductive diseases, and remains the main cause of female infertility. Granulosa cells play a critical role in normal follicle development and steroid hormones synthesis. In spite of extensive research, no sole medication has been approved by FDA to treat PCOS.
View Article and Find Full Text PDFBackground: Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPAR ligands, including pioglitazone, are also used in the management of this disease.
View Article and Find Full Text PDFIn order to achieve a sufficient population of cardiac-committed progenitor cells, it is crucial to know the mechanisms of cardiac progenitor formation. Previous studies suggested ROS effect on cardiac commitment events to play a key role in the cell signaling and activate cardiac differentiation of pluripotent stem cells. We previously reported that PPAR activity is essential for cardiac progenitor cell commitment.
View Article and Find Full Text PDF