Publications by authors named "M BOEHM"

The epidermal growth factor receptor (EGFR) signaling pathway is an evolutionary conserved mechanism to control cell behavior during tissue development and homeostasis. Deregulation of this pathway has been associated with abnormal cell behavior, including hyperproliferation, senescence, and an inflammatory cell phenotype, thereby contributing to pathologies across a variety of organs, including kidney, skin, and lung. To date, there are seven distinct EGFR ligands described.

View Article and Find Full Text PDF

Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-body physics. In this context, SrCu_{2}(BO_{3})_{2} is a faithful realization of the Shastry-Sutherland model for ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of pressure. We perform inelastic neutron scattering measurements on SrCu_{2}(BO_{3})_{2} at 5.

View Article and Find Full Text PDF
Article Synopsis
  • The oxidative pentose phosphate (OPP) pathway is crucial for generating metabolites and reducing power in cells, with its initial reactions supporting the Calvin-Benson cycle.
  • Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme in this pathway, regulated by the redox protein OpcA in cyanobacteria, showing different activity based on OpcA's oxidation state.
  • Research using cryogenic electron microscopy revealed that OpcA interacts with G6PDH, causing structural changes that fine-tune G6PDH activity depending on the amount of OpcA bound, highlighting a sophisticated regulatory mechanism in the OPP pathway.
View Article and Find Full Text PDF
Article Synopsis
  • The human MRGPRD protein is part of a family of receptors that play a key role in detecting pain and itch, but it's not well-researched and has few known activating compounds.
  • The study identifies two new potent agonists, EP-2825 and EP-3945, that are about 100 times more effective than the previously known agonist, β-alanine.
  • The researchers also explored the structures of MRGPRD bound to these agonists, revealing unique binding interactions and flexibility in the receptor, which could help in creating new drugs targeting MRGPRD.
View Article and Find Full Text PDF

Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice.

View Article and Find Full Text PDF