Publications by authors named "M B Zaghlula"

In response to calls for public engagement on human genome editing (HGE), which intensified after the 2018 He Jiankui scandal that resulted in the implantation of genetically modified embryos, we detail an anticipatory approach to the governance of HGE. By soliciting multidisciplinary experts' input on the drivers and uncertainties of HGE development, we developed a set of plausible future scenarios to ascertain publics values-specifically, their hopes and concerns regarding the novel technology and its applications. In turn, we gathered a subset of multidisciplinary experts to propose governance recommendations for HGE that incorporate identified publics' values.

View Article and Find Full Text PDF

Twenty genetic therapies have been approved by the US Food and Drug Administration to date, a number that now includes the first CRISPR genome-editing therapy for sickle cell disease-CASGEVY (exagamglogene autotemcel, Vertex Pharmaceuticals). This extraordinary milestone is widely celebrated owing to the promise for future genome-editing treatments of previously intractable genetic disorders and cancers. At the same time, such genetic therapies are the most expensive drugs on the market, with list prices exceeding US$4 million per patient.

View Article and Find Full Text PDF

Alterations in gene dosage due to copy number variation are associated with autism spectrum disorder, intellectual disability (ID), and other psychiatric disorders. The nervous system is so acutely sensitive to the dose of methyl-CpG-binding protein 2 (MeCP2) that even a twofold change in MeCP2 protein-either increased or decreased-results in distinct disorders with overlapping features including ID, autistic behavior, and severe motor dysfunction. Rett syndrome is caused by loss-of-function mutations in , whereas duplications spanning the locus result in duplication syndrome (MDS), which accounts for ~1% of X-linked ID.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered that the gene Dbx1 is crucial for developing specific neuron types in key hypothalamic regions linked to certain innate behaviors.
  • * Mice lacking the Dbx1 gene in the hypothalamus showed reduced reactions to predator threats and feeding stress, demonstrating that this gene is vital for regulating some but not all innate behaviors.
View Article and Find Full Text PDF