Publications by authors named "M B Skaddan"

Purpose: Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signaling, and as such a critical regulator of cell proliferation and survival. Aberrant BCR signaling is important in the pathogenesis of various B cell malignancies and autoimmune disorders. Here, we describe the development of a novel positron emission tomography (PET) tracer for imaging BTK expression and/or occupancy by small molecule therapeutics.

View Article and Find Full Text PDF

The implication of the receptor for advanced glycation end-products (RAGE) in numerous diseases and neurodegenerative disorders makes it interesting both as a therapeutic target and as an inflammatory biomarker. In the context of investigating RAGE as a biomarker, there is interest in developing radiotracers that will enable quantification of RAGE using positron emission tomography (PET) imaging. We have synthesized potential small molecule radiotracers for both the intracellular ([F]InRAGER) and extracellular ([F]RAGER) domains of RAGE.

View Article and Find Full Text PDF

[F]6-fluoro-L-DOPA ([F]FDOPA) is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that is used to image Parkinson's disease, brain tumors, and focal hyperinsulinism of infancy. Despite these important applications, [F]FDOPA PET remains underutilized because of synthetic challenges associated with accessing the radiotracer for clinical use; these stem from the need to radiofluorinate a highly electron-rich catechol ring in the presence of an amino acid. To address this longstanding challenge in the PET radiochemistry community, we have developed a one-pot, two-step synthesis of high-molar-activity [F]FDOPA by Cu-mediated fluorination of a pinacol boronate (BPin) precursor.

View Article and Find Full Text PDF

A one-pot two-step synthesis of 6-[F]fluoro-l-DOPA ([F]FDOPA) has been developed involving Cu-mediated radiofluorination of a pinacol boronate ester precursor. The method is fully automated, provides [F]FDOPA in good activity yield (104 ± 16 mCi, 6 ± 1%), excellent radiochemical purity (>99%) and high molar activity (3799 ± 2087 Ci mmol), n = 3, and has been validated to produce the radiotracer for human use.

View Article and Find Full Text PDF

As part of our effort in identifying phosphodiesterase (PDE) 4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (B) and biodistribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study.

View Article and Find Full Text PDF