Electronic health records (EHRs), though they are maintained and utilized for clinical and billing purposes, may provide a wealth of information for research. Currently, sources are available that offer insight into the health histories of well over a quarter of a billion people. Their use, however, is fraught with hazards, including introduction or reinforcement of biases, clarity of disease definitions, protection of patient privacy, definitions of covariates or confounders, accuracy of medication usage compared with prescriptions, the need to introduce other data sources such as vaccination or death records and the ensuing potential for inaccuracy, duplicative records, and understanding and interpreting the outcomes of data queries.
View Article and Find Full Text PDFIntroduction: To support long COVID research in National COVID Cohort Collaborative (N3C), the N3C Phenotype and Data Acquisition team created data designs to aid contributing sites in enhancing their data. Enhancements include: long COVID specialty clinic indicator; Admission, Discharge, and Transfer (ADT) transactions; patient-level social determinants of health; and in-hospital use of oxygen supplementation.
Methods: For each enhancement, we defined the scope and wrote guidance on how to prepare and populate the data in a standardized way.
Objective: The primary aim of this study is to address the critical issue of non-standardized units in clinical laboratory data, which poses significant challenges to data interoperability and secondary usage. Despite UCUM (Unified Code for Units of Measure) offering a unique representation for laboratory test units, nearly 60% of laboratory codes in healthcare organizations use non-standard units. We sought to design, implement and test a methodology for the harmonization of units to the UCUM standards across a large research network.
View Article and Find Full Text PDFBackground: A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC).
View Article and Find Full Text PDFObjective: Clinical research networks facilitate collaborative research, but data sharing remains a common barrier.
Materials And Methods: The TriNetX platform provides real-time access to electronic health record (EHR)-derived, anonymized data from 173 healthcare organizations (HCOs) and tools for queries and analysis. In 2022, 4 pediatric HCOs worked with TriNetX leadership to found the Pediatric Collaboratory Network (PCN), facilitated via a multi-institutional data-use agreement (DUA).