Publications by authors named "M B Oktay"

Purpose: Our study aims to determine the position and types of the hyoid bone and to evaluate the morphometry of the hyoid bone and tongue according to sex.

Methods: Our study included cervical Computed Tomography (CT) images of 200 individuals (100 females, 100 males) between the ages of 18 and 84. Using the 3D Slicer software package, hyoid bone position, shape, area, volume and tongue volume measurements were made on these images.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression.

View Article and Find Full Text PDF

Purpose: Breast cancer cells disseminate to distant sites via tumor microenvironment of metastasis (TMEM) doorways. The TIE2 inhibitor rebastinib blocks TMEM doorway function in the PyMT mouse model of breast cancer. We aimed to assess the safety and pharmacodynamics of rebastinib plus paclitaxel or eribulin in patients with HER2-negative metastatic breast cancer (MBC).

View Article and Find Full Text PDF

Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy.

View Article and Find Full Text PDF