Publications by authors named "M B Meyerson"

Article Synopsis
  • Researchers tackled the challenge of studying structural variants (SVs) in repetitive genomic regions using advanced technologies like long-read sequencing and the gapless T2T assembly.
  • They successfully analyzed 13 complex cases, resolving 10 by identifying specific genomic breakpoints and structures that were previously difficult to sequence, including Robertsonian translocations and ring chromosomes.
  • The study highlighted new mechanisms for SV formation and provided insights into how these genome variations affect gene expression and potential implications for disease diagnosis and genome biology.
View Article and Find Full Text PDF

KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A.

View Article and Find Full Text PDF

A subset of phosphodiesterase 3 (PDE3) inhibitors kills cancer cells that express both PDE3A and SLFN12 by inducing a protein-protein interaction between the two, triggering SLFN12 tRNase activity. Following discovery of the prototypical tool compound, , an improved compound, , was discovered to be potent in cells and active in several tumor models . More analogs were prepared and tested with the goal of increasing metabolic stability and decreasing PDE3 inhibition while maintaining the cellular activity of .

View Article and Find Full Text PDF
Article Synopsis
  • The article mentioned has been corrected to address errors or inaccuracies.
  • The correction is linked to the Digital Object Identifier (DOI) 10.1371/journal.pmed.0020313.
  • This ensures that readers have access to the most accurate information in the research.
View Article and Find Full Text PDF

High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy.

View Article and Find Full Text PDF