The fusion power density produced in a tokamak is proportional to its magnetic field strength to the fourth power. Second-generation high temperature superconductor (2G HTS) wires demonstrate remarkable engineering current density (averaged over the full wire), J, at very high magnetic fields, driving progress in fusion and other applications. The key challenge for HTS wires has been to offer an acceptable combination of high and consistent superconducting performance in high magnetic fields, high volume supply, and low price.
View Article and Find Full Text PDFWe report the discovery of remarkable photo-physical phenomena with characteristics unique to epitaxial graphene grown on 6H-SiC (000-1). Surprisingly, the electrical resistance of graphene increases under light illumination in contrast to conventional materials where it normally decreases. The resistance shows logarithmic temperature dependences which may be attributed to an Altshuler-Aronov effect.
View Article and Find Full Text PDFWe investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs/AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator.
View Article and Find Full Text PDFFor the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy.
View Article and Find Full Text PDFWe demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.
View Article and Find Full Text PDF