Publications by authors named "M B Fasano"

Autism spectrum disorder (ASD) is a complex multifactorial neurodevelopmental disorder. Despite extensive research involving genome-wide association studies, copy number variant (CNV) testing, and genome sequencing, the comprehensive genetic landscape remains incomplete. In this context, we developed a systems biology approach to prioritize genes associated with ASD and uncover potential new candidates.

View Article and Find Full Text PDF

Objectives: Evaluate the differences in metabolic risk factors in preschool children with normal weight (NWG) or with some degree of excess weight (OWG).

Methods: Body mass index (BMI), umbilical waist circumference (WC), mid-upper arm circumference (MUAC) and total body fat (TBF) in children aged 1-5.9 years.

View Article and Find Full Text PDF

A challenging topic in materials engineering is the development of numerical models that can accurately predict material properties with atomistic accuracy, matching the scale and level of detail achieved by experiments. In this regard, coarse-grained (CG) molecular dynamics (MD) simulations are a popular method for achieving this goal. Despite the efforts of the scientific community, a reliable CG model with quasi-atomistic accuracy has not yet been fully achieved for the design and prototyping of materials, especially polymers.

View Article and Find Full Text PDF

Background: Squamous cell carcinoma of the head and neck (SCCHN) accounts for 3% of all malignant tumors in Italy. Immune checkpoint inhibitors combined with chemotherapy is first-line treatment for SCCHN; however, second-line treatment options are limited. Taxanes are widely used for combination therapy of SCCHN, as clinical trials have shown their efficacy in patients with this disease, particularly in patients with prior therapy.

View Article and Find Full Text PDF

A review of different modeling techniques, specifically in the framework of carbon-based nanomaterials (CNMs, including nanoparticles such as graphene and carbon nanotubes-CNTs) and the composites and devices that can be derived from them, is presented. The article emphasizes that the overall performance of these materials depends on mechanisms that operate across different time and spatial scales, requiring tailored approaches based on the material type, size, internal structure/configuration, and the specific properties of interest. Far from attempting to cover the entire spectrum of models, this review examines a wide range of analysis and simulation techniques, highlighting their potential use, some of their weaknesses and strengths, and presenting the latest developments and some application examples.

View Article and Find Full Text PDF