Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFAbundance estimates inform ungulate management and recovery efforts. Yet effective and affordable estimation techniques remain absent for most ungulates lacking identifiable marks and inhabiting rugged or highly vegetated terrain. Methods using N-mixture models with camera trap imagery form an appealing solution but remain unvalidated.
View Article and Find Full Text PDFIn this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and dielectric properties, enhancing the ability to analyze, characterize, and discriminate cells in a heterogeneous population. A high-speed camera is used to capture images of and track multiple cells in real-time as they flow through a microfluidic channel.
View Article and Find Full Text PDFBulk electrical impedance spectroscopy (bio-capacitance) probes, hold significant promise for real-time cell monitoring in bioprocesses. Focusing on Chinese hamster ovary (CHO) cells, we present a sensitivity analysis framework to assess the impact of cell and culture properties on the complex permittivity spectrum, ε, and its associated parameters, permittivity increment, Δε, critical frequency, f, and Cole-Cole parameter, α, measured by bio-capacitance probes. Our sensitivity analysis showed that Δε is highly sensitive to cell size and concentration, making it suitable for estimating biovolume during the exponential growth phase, whereas f provides information about cumulative changes in cell size, membrane permittivity, and cytoplasm conductivity during the transition to death phase.
View Article and Find Full Text PDFBackground: Creatine kinase (CK) is an intracellular enzyme expressed most commonly in tissues such as skeletal muscle. CK can be used as an investigation to support the diagnosis of conditions such as neuroleptic malignant syndrome (NMS), a rare idiosyncratic drug reaction - classically to antipsychotic medications - which can be fatal. Routine screening of CK in psychiatric inpatients is a known practice, but its value is uncertain.
View Article and Find Full Text PDF