Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample.
View Article and Find Full Text PDFRev Sci Instrum
September 2022
A novel dual-energy fast neutron imaging technique is presented using short-pulse laser-driven neutron sources to leverage their inherent adaptive spectral control to enable 3D volume segmentation and reconstruction. Laser-accelerated ion beams incident onto secondary targets create directional, broadband, MeV-class neutrons. Synthetic radiographs are produced of multi-material objects using ion and neutron spectra derived from analytic and numerical models.
View Article and Find Full Text PDFWe report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.
View Article and Find Full Text PDFIn vivo experiments are still widely used for the testing of lung toxicity but there is an ethical and legal obligation to replace, reduce and refine animal testing. Lung A549 cells could serve as an in vitro indicator for acute lung toxicity but little data about the correlation of the cytotoxicity in A549 cells and data leading to CLP classifications are available. We exposed A549 cells to 19 CLP-classified substances with doses of 25, 50, and 100 μg/cm either under submerged (SME) condition or with aerosols at the air-liquid interface (ALIF) and determined accuracy, precision, sensitivity and the F1 score with the CLP classifications H330, H332, or H335.
View Article and Find Full Text PDF