Publications by authors named "M Avlund"

Gene regulatory networks (GRNs) that make reliable decisions should have design features to cope with random fluctuations in the levels or activities of biological molecules. The phage λ GRN makes a lysis-lysogeny decision informed by the number of phages infecting the cell. To analyse the design of decision making GRNs, we generated random in silico GRNs comprised of two or three transcriptional regulators and selected those able to perform a λ-like decision in the presence of noise.

View Article and Find Full Text PDF

Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to "voter models" of interest in nonequilibrium statistical mechanics.

View Article and Find Full Text PDF

We measure elastomechanical spectra for a family of thin shells. We show that these spectra can be described by a "semiclassical" trace formula comprising periodic orbits on geodesics, with the periods of these orbits consistent with those extracted from experiment. The influence of periodic orbits on spectra in the case of two-dimensional curved geometries is thereby demonstrated, where the parameter corresponding to Planck's constant in quantum systems involves the wave number and the curvature radius.

View Article and Find Full Text PDF

The behavior of living systems is dependent on large dynamical gene regulatory networks (GRNs). However, the functioning of even the smallest GRNs is difficult to predict. The bistable GRN of bacteriophage lambda is able to count to make a decision between lysis and lysogeny on the basis of the number of phages infecting the cell, even though replication of the phage genome eliminates this initial difference.

View Article and Find Full Text PDF

Phage lambda is among the simplest organisms that make a developmental decision. An infected bacterium goes either into the lytic state, where the phage particles rapidly replicate and eventually lyse the cell, or into a lysogenic state, where the phage goes dormant and replicates along with the cell. Experimental observations by P.

View Article and Find Full Text PDF