Publications by authors named "M Aslanoglu"

The demand for foods with high antioxidant capacity has increased and research on food analysis continues to increase. Chlorogenic acid is a potent antioxidant molecule and can exhibit various physiological activities. This study aims to analyze Mirra coffee for the determination of chlorogenic acid using an adsorptive voltammetric method.

View Article and Find Full Text PDF

A sensitive electrochemical method based on carbon nanofibers (CNFs) and bimetallic nanoparticles of dysprosium oxide (DyO) and europium oxide (EuO) was developed for the determination of papaverine in pharmaceuticals and human urine. Several electrodes were compared in respect to their electrochemically active surface area calculated as 0.0603, 0.

View Article and Find Full Text PDF

This study reports the preparation of a novel voltammetric platform based on the modification of a glassy carbon electrode (GCE) with carbon nanotubes (MWCNTs) and dysprosium oxide (DyO) nanoparticles. The electrode material was characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction method (XRD). The novel platform (DyONPs/MWCNTs/GCE) was applied for the voltammetric determination of sunset yellow (SY) in the presence of tartrazine (TAR).

View Article and Find Full Text PDF

A voltammetric platform based on modifying glassy carbon electrodes (GCEs) with ruthenium nanoparticles decorated carbon nanotubes (CNTs) was applied for the determination of capsaicin in pepper samples. The nanoparticles of ruthenium (RuNPs) were obtained at carbon nanotubes modified GCE by cyclic voltammetry. The composite of RuNPs-CNTs was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX).

View Article and Find Full Text PDF

A composite of carbon nanofibers (CNFs) and tri-metallic nanoparticles of gold, cobalt and nickel were used for the preparation of a novel voltammetric platform. The proposed voltammetric platform was utilized for quantifying ethyl paraben (EPB) in pharmaceutical and cosmetic products. The electrode layers were characterized by utilizing X-ray diffraction method (XRD) and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF