Publications by authors named "M Arzan Hosen"

Complexing medications with cyclodextrins can enhance their solubility and stability. In this study, we investigated the host-guest complexation between Tetrahydrocurcumin (THC) and Hydroxypropyl-β-Cyclodextrin (HP-β-CD) using density functional theory (DFT) at the B3LYP-D3/TPZ level of theory in two possible orientations. To determine the reactive sites in both complexes for electrophilic and nucleophilic attacks, we calculated and interpreted the binding energy, HOMO and LUMO orbitals, global chemical reactivity descriptors, natural bond orbital (NBO) analysis, and Fukui indices.

View Article and Find Full Text PDF

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

() is an obligate, intracellular, neurotropic protozoan parasite. After primary infection, parasite undergoes stage conversion from fast-replicating tachyzoites to slow-replicating dormant bradyzoites, particularly in the brain, and persists for a lifetime of an individual. In this study, the impact of infection in individuals with psychological disorder, that is, major depressive disorder (MDD) has been studied.

View Article and Find Full Text PDF

CXCR4, a chemokine receptor known as Fusin or CD184, spans the outer membrane of various human cells, including leukocytes. This receptor is essential for HIV infection as well as for many vital cellular processes and is implicated to be associated with multiple pathologies, including cancers. This study employs various computational tools to investigate the molecular effects of disease-vulnerable germ-line missense and non-coding SNPs of the CXCR4 gene.

View Article and Find Full Text PDF

Cryptococcus neoformans causes cryptococcal meningitis, which is lethal to immune-compromised people, especially AIDS patients. This study employed diverse in silico techniques to find the best phytochemical to block farnesyltransferase (FTase). Based on molecular docking, the top two compounds selected from a screening of 5807 phytochemical compounds from 29 medicinal plants were CID_8299 (hydroxyacetone) and CID_71346280 (1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one), with docking scores of -5.

View Article and Find Full Text PDF