Solid lipid nanoparticles (SLNs) are emulsion-based carriers of lipophilic bioactive compounds. However, their digestibility may be affected by the solid lipid phase composition. Hence, the aim of this work was to study the in vitro lipolysis kinetics as well as the relationship between the lipid digestion, micelle fraction composition and β-carotene bioaccessibility of SLNs with different solid lipids, being blends of medium chain triglyceride (MCT) oil, glyceryl stearate (GS) or hydrogenated palm oil (HPO) as compared to liquid lipid nanoparticles (LLNs) with pure MCT.
View Article and Find Full Text PDFNanoemulsions exhibit a number of advantages to carry and deliver lipophilic compounds such as essential oils (EOs) due to their good stability and high surface area per volume unit. The purpose of this work was to assess the long-term stability of nanoemulsions of clove and lemongrass (LG) EOs and their principal components eugenol and citral (CI), respectively, at 3 different concentrations (2, 5 or 10 times their respective minimum inhibitory concentrations) and at two storage temperatures (1 °C and 21 °C). The initial droplet size of LG and CI-loaded nanoemulsions was below 100 nm and most of them kept droplet sizes in the nano-range until the end of storage at both temperatures.
View Article and Find Full Text PDFNanoemulsions containing 0.5% w/w corn oil enriched with 0.4% w/w curcumin, sodium-alginate (1.
View Article and Find Full Text PDF